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Abstract We consider the following implicit quasi-variational inequality problem:
given two topological vector spaces E and F, two nonempty sets X ⊆ E and C ⊆ F,
two multifunctions � : X → 2X and � : X → 2C, and a single-valued map ψ :
X × C × X → IR, find a pair (x̂, ẑ) ∈ X × C such that x̂ ∈ �(x̂), ẑ ∈ �(x̂) and
ψ(x̂, ẑ, y) ≤ 0 for all y ∈ �(x̂). We prove an existence theorem in the setting of Banach
spaces where no continuity or monotonicity assumption is required on the multifunc-
tion�. Our result extends to non-compact and infinite-dimensional setting a previous
results of the authors (Theorem 3.2 of Cubbiotti and Yao [15] Math. Methods Oper.
Res. 46, 213–228 (1997)). It also extends to the above problem a recent existence
result established for the explicit case (C = E∗ and ψ(x, z, y) = 〈z, x − y〉).

Keywords Implicit generalized quasi-variational inequalities · Multifunctions ·
Lower semicontinuity · Upper semicontinuity · Banach space

1 Introduction

The importance of the variational inequality theory is well documented in the litera-
ture, due to its wide range of applications to fields of mathematics such as mechanics,
network equilibrium, control theory, game theory, complementarity problems, opti-
mization, etc. (see for instance [2–5, 19, 22–26, 30, 31, 33, 38, 39]).

Let E and F be two topological vector spaces, X ⊆ E and C ⊆ F two nonempty
sets,�: X → 2X and�: X → 2C two multifunctions, andψ: X ×C×X → IR a single-
valued map. The implicit generalized quasi-variational inequality problem associated
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with X, C, �, � and ψ (see [15, 27]) is to find a pair (x̂, ẑ) ∈ X × C such that

x̂ ∈ �(x̂), ẑ ∈ �(x̂) and ψ(x̂, ẑ, y) ≤ 0 for all y ∈ �(x̂). (1)

When C = F = E∗ and ψ(x, z, y) = 〈z, x − y〉 (E∗ denoting the topological dual of E),
problem (1) gives back the usual generalized quasi-variational inequality problem [6,
35], which, in turn, extends the classical variational inequality problem [26].

It is interesting to observe that problem (1) contains as a special case the extended
generalized quasi-variational inequality problem introduced and studied by one of
the authors in [39], motivated by several applications to game and economic theory.
It also contains the variational-like inequality problem studied in [32, 33, 38].

As regards existence results for generalized quasi-variational inequality problems
(both in explicit and implicit form), a very common assumption in the literature is
the upper semicontinuity of the multifunction �. When � is single-valued, such an
assumption reduces to the ordinary notion of continuity. Recently, much attention has
been paid by many authors to the case where the multifunction � has no continuity
properties (see for instance [7, 8, 10, 11, 13, 14, 16, 17, 29, 34, 37, 40–42]), obtaining
new existence results and also applications to fixed point theory, control theory and
to the traffic equilibrium problem [9, 12, 18, 20].

In the paper [15], problem (1) has been studied in the case where E and F are finite-
dimensional, obtaining some existence results without continuity assumptions on the
multifunction � and also applications to generalized quasi-variational inequalities
with discontinuous fuzzy mappings.

Our aim in this paper is to extend the main result of Cubiotti and Yao [15] (Theorem
3.2) to noncompact and infinite-dimensional setting. We prove an existence theorem
in the setting of Banach spaces where no continuity assumption is required on the
multifunction � (Theorem 3.3 below). It should be mentioned that a first attempt in
the same direction has been made recently in the paper [27]. Even though our result
in this paper improves some aspects of the main result of Huang and Yao [27], it can
be checked that the two results are independent.

Finally, we remark that our result covers as a special case (and also improves in
some aspects) a recent existence result established for the explicit case (Theorem 3.1.
of Cubiotti [14]).

2 Preliminaries

For the basic facts about multifunctions, we refer to Klein and Thompson [28].
Here, we only recall that given two topological spaces S and Y and a multifunction
F : S → 2Y , we say that F is lower semicontinuous (resp., upper semicontinuous)
at x ∈ S if for each open set A ⊆ Y, with F(x) ∩ A 	= ∅ (resp., with F(x) ⊆ A),
the set F−(A) := {s ∈ S : F(s) ∩ A 	= ∅} (resp., the set {s ∈ S : F(s) ⊆ A}) is a
neighborhood of x in S. We say that F is lower (resp., upper) semicontinuous in S if it
is lower (resp., upper) semicontinuous at each point x ∈ S. The graph of F is the set
{(s, y) ∈ S × Y : y ∈ F(s)}.

Let (E, ‖ · ‖E) be a real normed space. If x ∈ E and r > 0, we denote by B(x, r) and
B(x, r), respectively, the open ball and the closed ball in E centered at x with radius r.
For simplicity, we shall put

Br := B(0, r), Br := B(0, r).
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We say that a multifunction F : S → 2E is Hausdorff lower semicontinuous (resp.,
Hausdorff upper semicontinuous) at x0 ∈ S if for each ε > 0 there exists a neighbor-
hood U of x0 in S such that

F(x0) ⊆ F(x)+ Bε for all x ∈ U,
(

resp., F(x) ⊆ F(x0)+ Bε for all x ∈ U
)
.

We say that F is Hausdorff lower (resp., Hausdorff upper) semicontinuous in S if it is
Hausdorff lower (resp., Hausdorff upper) semicontinuous at each point x ∈ S. We say
that F is Hausdorff continuous if it is Hausdorff lower and upper semicontinuous. It
is easy to check [28, 36] that Hausdorff lower semicontinuity implies lower semiconti-
nuity, and, conversely, upper semicontinuity implies Hausdorff upper semicontinuity.
The converse implications are true if each set F(x) is nonempty and compact [28,
Theorem 7.1.14].

If A ⊆ E is a nonempty set and x ∈ E, we put

d(x, A) := inf
u∈A

‖x − u‖E.

Moreover, we shall denote by aff(A) the affine hull of the set A. If A ⊆ C ⊆ E,
we shall denote by intC(A) the interior of A in C. We recall that if A ⊆ E is a non-
empty finite-dimensional convex set, then intaff(A)(A)	=∅. Finally, we recall that the
set A ⊆ E is said to be compactly closed (resp., finitely closed) if its intersection with
any compact subset (resp., any finite-dimensional subspace) of E is closed.

3 Results

Before stating our main existence theorem, we give some preliminary results. First,
we note that Theorem 3.2 of Cubiotti and Yao [15] still holds if the set C ⊆ IRm is
replaced by any nonempty subset of an Hausdorff topological vector space F. Starting
from this, we can obtain the following noncompact version of the same result (where
the open and closed balls are taken obviously in the space IRn and ‖ · ‖ denotes the
Euclidean norm of IRn).

Theorem 3.1 Let X ⊆ IRn be a nonempty closed convex set, C a nonempty subset of the
Hausdorff topological vector space F, �: X → 2X and�: X → 2C two multifunctions,
ψ: X × C × X → IR a single-valued map. Assume that as follows:

(1) � is lower semicontinuous with nonempty convex values;
(2) the set E := {x ∈ X : x ∈ �(x)} is closed;
(3) aff(�(x)) = aff(X) for all x ∈ E;
(4) �(x) is nonempty and compact for x ∈ X and convex for x ∈ E;
(5) for each y ∈ X, the set {x ∈ E : infz∈�(x) ψ(x, z, y) ≤ 0} is closed;
(6) for each x ∈ E, the set {y ∈ X : infz∈�(x) ψ(x, z, y) ≤ 0} is closed;
(7) for each x ∈ E and each z ∈ �(x), one has ψ(x, z, x) = 0;
(8) for each x ∈ E and each z ∈ �(x), the function ψ(x, z, ·) is concave on �(x);
(9) for each x ∈ E and each y ∈ �(x), the function ψ(x, ·, y) is lower semicontinuous

(in the sense of single-valued maps) and convex on �(x).

Moreover, assume that there exists r > 0 such that the following conditions
hold:
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(10) X ∩ Br 	= ∅ and �(x) ∩ Br 	= ∅ for all x ∈ X ∩ Br;
(11) for each x ∈ E, with ‖x‖ = r, and each z ∈ �(x), there exists y ∈ �(x), with

‖y‖ < r, such that ψ(x, z, y) ≥ 0.

Then there exists (x̂, ẑ) ∈ X × C, with x̂ ∈ �(x̂), ẑ ∈ �(x̂) and ‖x̂‖ ≤ r, such that

ψ(x̂, ẑ, y) ≤ 0 for all y ∈ �(x̂).
Proof Put Xr := X ∩ Br. By Proposition 2.1 of Cubiotti and Yuan [17], the multifunc-
tion

�r: x ∈ Xr → �(x) ∩ Xr = �(x) ∩ Br

is lower semicontinuous with nonempty convex values. Moreover, its fixed-points set

Er := {x ∈ Xr : x ∈ �(x) ∩ Br} = E ∩ Br

is closed by (2). We claim that

aff(�r(x)) = aff(Xr) for all x ∈ Er.

To prove this, fix any x ∈ Er. Since, by convexity one has �(x) = ri(�(x)), by assump-
tion (10), we get

ri(�(x)) ∩ Br 	= ∅.

Choose any point u ∈ ri(�(x)) ∩ Br, and let ε > 0 be such that

B(u, ε) ⊆ Br and B(u, ε) ∩ aff(�(x)) ⊆ �(x).

Since, B(u, ε) ∩ aff(�(x)) is open in aff(�(x)), its affine hull coincides with the whole
aff(�(x)), that is

aff(B(u, ε) ∩ aff(�(x))) = aff(�(x)).

Moreover, since

B(u, ε) ∩ aff(�(x)) ⊆ �(x) ∩ Br

taking into account (3), we get

aff(B(u, ε) ∩ aff(�(x))) ⊆ aff(�(x) ∩ Br) ⊆ aff(�(x) ∩ Br) ⊆ aff(X ∩ Br)

⊆ aff(X) = aff(�(x)) = aff(B(u, ε) ∩ aff(�(x))).

In particular, this implies that

aff(�(x) ∩ Br) = aff(X ∩ Br),

as claimed. Consequently, applying Theorem 3.2 of Cubiotti and Yao [15] to the set
Xr and to the multi-functions �r and �|Xr (it is routine matter to check that all the
remaining assumptions are satisfied), we get the existence of a pair (x̂, ẑ) ∈ (X∩Br)×C
such that

x̂ ∈ �(x̂), ẑ ∈ �(x̂) and ψ(x̂, ẑ, v) ≤ 0 for all v ∈ �(x̂) ∩ Br. (2)

We now show that the pair (x̂, ẑ) satisfies the conclusion. To see this, fix any y ∈ �(x̂).
We distinguish two cases.
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(a) ‖x̂‖ = r. By assumption (xi), there exists a point w ∈ �(x̂) ∩ Br such that
ψ(x̂, ẑ, w) ≥ 0. By (2), we get ψ(x̂, ẑ, w) = 0. Choose t ∈ ]0, 1[ in such a way that

yt := t y + (1 − t)w ∈ Br.

Taking into account (2), assumption (8) and the convexity of �(x̂), we get

0 ≥ ψ(x̂, ẑ, yt) ≥ tψ(x̂, ẑ, y)+ (1 − t) ψ(x̂, ẑ, w) = tψ(x̂, ẑ, y)

hence

ψ(x̂, ẑ, y) ≤ 0

as claimed.
(b) ‖x̂‖ < r. Choose t ∈ ]0, 1[ in such a way that

ut := ty + (1 − t)x̂ ∈ Br.

Taking into account (2), assumptions (7) and (8), and the convexity of �(x̂), we get

0 ≥ ψ(x̂, ẑ, ut) ≥ tψ(x̂, ẑ, y)+ (1 − t) ψ(x̂, ẑ, x̂) = tψ(x̂, ẑ, y)

hence

ψ(x̂, ẑ, y) ≤ 0,

as claimed. �

Corollary 3.2 Let X, C, F,�,�,ψ be as in Theorem 3.1. Assume that assumptions (1)–
(9) of Theorem 3.1 are satisfied. Moreover, assume that there exists a nonempty compact
set K ⊆ X such that the following conditions hold:

(10)′ �(x) ∩ K 	= for all x ∈ X;
(11)′ for each x ∈ E\K, and each z ∈ �(x), there exists y ∈ �(x) ∩ K such that

ψ(x, z, y) ≥ 0.

Then there exists (x̂, ẑ) ∈ X × C, with x̂ ∈ �(x̂) and ẑ ∈ �(x̂), such that

ψ(x̂, ẑ, y) ≤ 0 for all y ∈ �(x̂).
Proof It suffices to take r > 0 in such a way that K ⊆ Br. The conclusion follows at
once by Theorem 3.1. �

The following is the main result of the paper.

Theorem 3.3 Let (E, ‖·‖E) be a real Banach space, X ⊆ E a closed convex set, C a non-
empty subset of the Hausdorff topological vector space F, �: X → 2X and�: X → 2C

two multifunctions, ψ: X × C × X → IR a single-valued map. Let K1, K2 ⊆ X be two
nonempty compact sets, such that K1 ⊆ K2 and K1 is finite-dimensional. Assume that:

(1) the multifunction � is Hausdorff lower semicontinuous with closed convex val-
ues;

(2) the set E := {x ∈ X : x ∈ �(x)} is compactly closed;
(3) intaff(X)(�(x)) 	= ∅ for all x ∈ X;
(4) �(x) is nonempty and compact for x ∈ X and convex for x ∈ E;
(5) for each y ∈ X, the set {x ∈ E : infz∈�(x) ψ(x, z, y) ≤ 0} is compactly closed;
(6) for each x ∈ E, the set {y ∈ X : infz∈�(x) ψ(x, z, y) ≤ 0} is finitely closed;
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(7) for each x ∈ E and each z ∈ �(x), one has ψ(x, z, x) = 0;
(8) for each x ∈ E and each z ∈ �(x), the function ψ(x, z, ·) is concave on �(x) and

the set {y ∈ X : ψ(x, z, y) ≤ 0} is closed;
(9) for each x ∈ E and each y ∈ �(x), the function ψ(x, ·, y) is lower semicontinuous

(in the sense of single-valued maps) and convex on �(x).
(10) �(x) ∩ K1 	=∅ for all x ∈ X;
(11) for each x ∈ E\ K2, and each z ∈ �(x), one has

sup
y∈�(x)∩K1

ψ(x, z, y) > 0.

Then there exists (x̂, ẑ) ∈ K2 × C, with x̂ ∈ �(x̂) and ẑ ∈ �(x̂), such that

ψ(x̂, ẑ, y) ≤ 0 for all y ∈ �(x̂).
Remark When C = F = E∗ andψ(x, z, y) = 〈z, x−y〉, the assumption (6) of Theorem
3.3 is automatically satisfied. Indeed, for each fixed x ∈ E the function

y → inf
z∈�(x)〈z, x − y〉

being concave, is continuous over any finite-dimensional subspace of E. Moreover,
we note that if the multifunction � has closed graph, then it has closed values and the
set E is closed, while the converse implication is not true in general. Consequently,
taking C = F = E∗ (endowed with the weak-star topology) and ψ(x, z, y) = 〈z, x−y〉,
Theorem 3.3 gives back (and also improves) Theorem 1.2 of Cubiotti [14]. Finally, we
remark that the completeness of the space E is necessary only to ensure that co K2
(the closed convex hull of the set K2) is compact. Therefore, Theorem 3.3 still holds
if E is any real normed space and co K2 is compact.

Proof of Theorem 3.3 Let V := aff(X) (the affine hull of X), and let V0 be the
linear subspace of E corresponding to V (of course, V may not be closed in E). For
each z ∈ co K2, choose any point uz ∈ intV �(z) (the interior of �(z) in V), which is
nonempty by assumption (3). By Proposition 2.5 of Cubiotti [13], for each z ∈ co K2
there exists an open bounded neighborhood Wz of z in E such that

uz ∈ intV

( ⋂

v∈Wz∩X

�(v)
)

. (3)

By Theorem 6 at p416 of Dunford and Schwartz [21], the set co K2 is compact. There-
fore, we can find points z1, . . . , zm ∈ co K2 such that

co K2 ⊆ �1 :=
m⋃

i=1

[
Wzi ∩ V

]
. (4)

First, we note that �1 is open in V and bounded. Therefore, since V \�1 	= ∅, the set
V\�1 is closed in V and co K2 is compact, by (4), we get

ξ := inf
{
d(a, V \ S1) : a ∈ co K2

}
> 0. (5)

If we put

�: = co K2 +
[
B ξ

2
∩ V0

]
, (6)

we have that � is convex and closed in V, and also � ⊆ �1.
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Let S be the family of all finite-dimensional linear subspaces of E containing the
set

K1 ∪ {uz1 , . . . , uzm}.
Fix S ∈ S, and put

XS := X ∩� ∩ S.

Observe that

K1 ⊆ X ∩� ∩ S ⊆ XS ⊆ X ∩ S.

In particular, XS 	= ∅. Let �S: XS → 2XS be the multifunction defined by setting, for
each x ∈ XS,

�S(x) := �(x) ∩ XS = �(x) ∩ X ∩� ∩ S.

At this point, our aim is to apply Corollary 3.2 to the data XS, C,�S,�|XS ,ψ |XS×C×XS .
To this aim, we observe the following facts.

(a) The set XS is a nonempty closed convex subset of S.
(b) The multifunction �S: XS → 2XS has nonempty convex values by (1) and (10)

(since K1 ⊆ XS). Moreover, since one has

ES := {
x ∈ XS : x ∈ �S(x)

} = E ∩ XS

and the set E is finitely closed by (2), it follows that the set ES is closed.
(c) The multifunction �S: XS → 2XS is lower semicontinuous. To see this, we first

prove that

� ∩ S ∩ intV�(x) 	= ∅ ∀x ∈ XS. (7)

To prove (7), fix x ∈ XS. Choose any x1 ∈ X ∩� ∩ S such that ‖x − x1‖E ≤ ξ/4.
Hence,

x − x1 ∈ V0 ∩ B ξ
4
.

Since by (6), we have

x1 ∈ co K2 +
[
B ξ

2
∩ V0

]

by (5) it follows that

x ∈ co K2 +
[
B 3ξ

4
∩ V0

]
⊆ �1.

Consequently, there exists i ∈ {1, . . . , m} such that x ∈ Wzi . By (3), we get in
particular that uzi ∈ intV�(x), hence

uzi ∈ S ∩ intV�(x) 	= ∅.

By assumption (10), we have �(x) ∩ K1 	= ∅. Fix any point v ∈ �(x) ∩ K1. The
convexity of �(x) implies that

v + t(uzi − v) ∈ S ∩ intV�(x) for all t ∈ ]0, 1]. (8)
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On the other hand, since by (6), we have

v +
[
B ξ

2
∩ V0

]
⊆ �

then, we can find α ∈ ]0, 1] such that

v + t(uzi − v) ∈ � for all t ∈ ]0,α[ . (9)

In particular, by (8) and (9) we have

S ∩� ∩ intV�(x) 	= ∅
as desired. Thus, (7) is now proved. At this point, we can prove that �S is lower
semicontinuous. To this aim, let x∗ ∈ XS and let A be an open set in V such that

�S(x∗) ∩ A 	= ∅.

By (7), we have that

� ∩ S ∩ intV�(x∗) 	= ∅.

Consequently, there exists a point

w ∈ � ∩ S ∩ intV�(x∗) ⊆ �S(x∗).

Choose a point v∗ ∈ A ∩ �S(x∗). Since, the set �(x∗) is convex, we have that

v∗ + l(w − v∗) ∈ XS ∩ intV�(x∗) for all l ∈ ]0, 1]. (10)

On the other hand, since A is open in V, there exists µ > 0 such that

v∗ + [
Bµ ∩ V0

] ⊆ A. (11)

Consequently, by (10) and (11), there exists τ ∈ ]0, 1] such that

v∗ + τ(w − v∗) ∈ XS ∩ A ∩ intV�(x∗). (12)

By Proposition 2.5 of Cubiotti [13], there is a neighborhood Z of x∗ in X such
that

v∗ + τ(w − v∗) ∈ intV

( ⋂

x∈Z

�(x)
)

. (13)

By (12) and (13), we get

v∗ + τ(w − v∗) ∈ XS ∩ A ∩ intV�(x) for all x ∈ Z

hence, in particular,

�S(x) ∩ A 	= ∅ for all x ∈ Z ∩ XS,

as desired.
(d) One has aff(�S(x)) = aff(XS) for all x ∈ XS. To see this, fix x ∈ XS. Observe that

the set

T := intV�(x) ∩ aff(XS)
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is open in aff(XS) and by (7) one has

∅ 	= � ∩ S ∩ intV�(x)

= X ∩� ∩ S ∩ intV�(x)

⊆ XS ∩ intV�(x)

⊆ T ∩ XS,

hence T ∩ XS 	= ∅. Consequently, by Proposition 2.1 of Cubiotti [11] (setted in
the affine manifold aff(XS) by an obvious translation), we get

aff(T ∩ XS) = aff(XS). (14)

Consequently, since

T ∩ XS ⊆ �S(x) ⊆ XS

by (14) we get our claim.
(e) The set K := K2 ∩ XS is compact and

�S(x) ∩ K 	= ∅ for all x ∈ XS.

Taking into account that K1 ⊆ XS ∩ K2, this follows easily by assumption (10)
and the definition of �S.

(f) For each fixed x ∈ ES\K, and each z ∈ �(x), there exists y ∈ �S(x)∩ K such that
ψ(x, z, y) > 0. This follows easily by assumption (11), taking into account that
ES\K ⊆ E\K2 and �(x) ∩ K1 ⊆ �S(x) ∩ K.

It is routine matter to check that all the remaining assumptions of Corollary 3.2 are
satisfied. Consequently, there exists (xS, zS) ∈ XS × C such that

xS ∈ �S(xS), zS ∈ �(xS) and ψ(xS, zS, y) ≤ 0 ∀ y ∈ �S(xS). (15)

By (15) and assumption (11), taking into account that K1 ⊆ XS, we have that xS ∈ K2.
We now prove that

ψ(xS, zS, y) ≤ 0 for all y ∈ �(xS) ∩ S. (16)

Indeed, if y ∈ �(xS) ∩ S, since

xS ∈ K2 ⊆ co K2 ⊆ X ⊆ V,

y ∈ �(xS) ⊆ X ⊆ V,

V − V ⊆ V0

and X is convex, we have that

xS + t(y − xS) ∈ X ∩
[
co K2 +

(
B ξ

2
∩ V0

)]
= X ∩�

for a sufficiently small t ∈ ]0, 1[ . Hence, by the convexity of �(xS) and by the definition
of XS, we have

xS + t(y − xS) ∈ X ∩ S ∩ S ∩ �(xS) ⊆ XS ∩ �(xS) = �S(xS).

By (15) and assumption (7) and (8), we get

0 ≥ ψ(xS, zS, xS + t(y − xS)) ≥ tψ(xS, zS, y)+ (1 − t) ψ(xS, zS, xS) = tψ(xS, zS, y)

hence ψ(xS, zS, y) ≤ 0, as desired.
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Resuming, we have proved that for each S ∈ S there exists a pair (xS, zS) ∈
(K2 ∩ S)× C such that

xS ∈ �(xS), zS ∈ �(xS) and ψ(xS, zS, y) ≤ 0 ∀ y ∈ �(xS) ∩ S. (17)

Now, we consider the net {xS}S∈S , with S ordered by the ordinary set inclusion ⊆. The
compactness of K2 implies that the net {xS}S∈S has a cluster point x̂ ∈ K2. Since, by
assumption (2) the set E ∩ K2 is closed, by (17), we get x̂ ∈ �(x̂). We now claim that

inf
z∈�(x̂)

ψ(x̂, z, y) ≤ 0 for all y ∈ intV�(x̂). (18)

On the contrary, assume that there exists ỹ ∈ intV�(x̂) such that

inf
z∈�(x̂)

ψ(x̂, z, ỹ) > 0. (19)

By Proposition 2.5 of Cubiotti [13], there exists σ > 0 such that

ỹ ∈ intV

( ⋂

x∈B(x̂,σ)∩X

�(x)
)

. (20)

By (19) and assumption (5), since the set
{

x ∈ E ∩ K2 : inf
z∈�(x) ψ(x̂, z, ỹ) > 0

}

is open in E ∩ K2, there exists α ∈ ]0, σ [ such that

inf
z∈�(x) ψ(x, z, ỹ) > 0 ∀ x ∈ B(x̂,α) ∩ K2 ∩ E. (21)

By construction, there exists Ŝ ∈ S such that ỹ ∈ Ŝ and xŜ ∈ B(x̂,α). By (20) we get

ỹ ∈ �(xŜ) ∩ Ŝ. Consequently, (17) implies that

ψ(xŜ, zŜ, ỹ) ≤ 0. (22)

On the other hand, (21) implies that

inf
z∈�(xŜ)

ψ(xŜ, z, ỹ) > 0

hence, in particular,

ψ(xŜ, zŜ, ỹ) > 0,

which contradicts (22). Consequently, (18) holds, hence

sup
y∈intV�(x̂)

inf
z∈�(x̂)

ψ(x̂, z, y) ≤ 0.

By Theorem 5 at p216 of Aubin [1], taking into account assumptions (1), (4), (8) and
(9), we then get

inf
z∈�(x̂)

sup
y∈intV�(x̂)

ψ(x̂, z, y) ≤ 0. (23)

Since by assumption (10) the function

z → sup
y∈intV�(x̂)

ψ(x̂, z, y)
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is lower semicontinuous on �(x̂) and the last set is compact, by (23) we get the
existence of a point ẑ ∈ �(x̂) such that

sup
y∈intV�(x̂)

ψ(x̂, ẑ, y) ≤ 0.

Taking into account assumption (viii), this implies

sup
y∈�(x̂)

ψ(x̂, ẑ, y) ≤ 0.

The proof is now complete. �

Example Let E = C = IR2, X = [0, 1] × [0, 1], �, � and ψ be defined as follows:
�(x) = X, �(x) = {(1, 1)} if x = (0, 0), �(x) = [0, 1/‖x‖2] × {1} if x 	= (0, 0) and
ψ(x, z, y) = 〈z, x − y〉. Then all assumptions in Theorem 3.3 are satisfied and it can be
easily seen that (x̂, ẑ) ∈ X × C is a solution of (1) where x̂ = (0, 0) and ẑ = (1, 1). But,
we observe that � is neither upper semicontinuous nor lower semicontinuous on X.
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